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Abstract: In this paper, we will extend to prove the existence of maximal solution
of quadratic fractional integral equation involving the generalized Mittag-Leffler
function and this maximal solution will serve as an upper bound for the solution
and this solution we got with the help of approximation of the integral equation
by sequence of solution converging to this.
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1. Introduction

Quadratic integral equations was investigated by many authors since long time
because of their useful applications in describing numerous events and problems
of the real world. Initial studies by Chandrasekhar [11, 12] form only a beginning
for this theory, mainly made by astrophysicists. After observing the occurrence in
the problems of some natural and physical processes of the universe, for example
in the theory of radiative transfer, kinetic theory of gases, in the theory of neu-
tron transport and in the traffic theory, Especially, the so-called quadratic integral
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equation of Chandrasekher type can be very often encountered in many applica-
tions [8, 9, 10, 11, 14, 15, 26]. Research was conducted by mathematicians. They
found some interesting open questions in this theory, some of them are Anichini,
Conti, Cahlon, Eskin, Banas, Argyros, Caballero, Mingarelli, Sadarangani, Nuss-
baum, Gripenberg, Mullikin, Rus, Shrikhant, Joshi, Schillings and many others.
The existence results for such quadratic operators equations are generally proved
under the mixed Lipschitz and compactness type conditions together with a cer-
tain growth condition on the nonlinearities involved in the quadratic operator or
functional equations. The hybrid fixed point theorems in Banach algebras find
numerous applications in the theory of nonlinear quadratic differential and integral
equations [16, 17, 18, 21, 22]. Therefore, it is of interest to relax or weaken these
conditions in the existence and approximation theory of quadratic integral equa-
tions. This is the main motivation of the present paper. In this paper, we prove
the existence as well as approximations of the solutions of a certain generalized
quadratic integral equation via an algorithm based on successive approximations
under weak partial Lipschitz and compactness type conditions.

The existing work for quadratic integral equations does not guarantee the approx-
imation of the solution. In this paper the approximation form by the algorithm
guarantee the solution of non-linear quadratic fractional differential equations in-
volving generalized Mittag-Leffler function.

Given a closed and bounded interval J = [0, 7] of the real line R for some 7' > 0,
we consider the quadratic fractional integral equation (in short QFIE)

['(q)

where f,g: J xR — R and ¢ : J — R are continuous functions, 1 < ¢ <2 and I’
is the Euler gamma function, and Eggq(x) is generalized Mittag-Leffler function.
By a solution of the QFIE (1.1), we mean a function x € C'(J,R) that satisfies the
equation (1.1) on J, where C'(J,R) is the space of continuous real-valued functions
defined on J.

2. Auxiliary Results

Unless otherwise mentioned, throughout this paper that follows, let £ denote a
partially ordered real normed linear space with an order relation < and the norm
| - |]. It is known that E is regular if {z,},en is a non-decreasing (resp. non-
increasing) sequence in E such that z, — z* as n — oo, then z,, < z* (resp.
x, = z*) for all n € N. Clearly, the partially ordered Banach space C'(J,R) is
regular and the conditions guaranteeing the regularity of any partially ordered
normed linear space F may be found in Heikkild and Lakshmikantham [24] and

o(t) = 1(t,2(0) (i [t = 9B = ot x<s>>ds) (L)
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the references therein.
In this section, we present some basic definitions and preliminaries which are useful
in further discussion.

Definition 2.1. (Mittag-Leffler Function) [30] The Mittag - Leffler function of
one parameter is denoted by E,(z) and defined as,

=y 2" (2.1)
prt I'( ak +1

where z,a € C, Re(a) > 0.
If we put @ = 1, then the above equation becomes

E:Fk+1 E: . (2.2)

k=0 k=0

Definition 2.2. (Mittag-Leffler Function for two parameters) The generalization
of Eo(2) was studied by Wiman (1905) [35], Agarwal [7] and Humbert and Agarwal
27] defined the function as,

Eop(z) = % mzk (2.3)

where z,a, € C, Re(a) >0, Re(f) > 0,
In 1971, The more generalized function is introduced by Prajapati [34] as

Z I'( ak + 5 (24)

=0

where z,a, 3,7 € C, Re(a) > 0, Re(8) > 0, Re(y) > 0,
where (v # 0,7)r =v(v + 1)(v 4+ 2)...(y + k — 1) is the Pochhammer symbol [34],

and
L(vy+ k)

Ve =
=T
In 2007, Shulka and Prajapati [34] introduced the function which is defined as,

qkz
Z k'F ak + ) (2:5)
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where z,a, 8,7 € C, min{Re(«), Re(), Re(y)} > 0, and ¢ € (0,1) UN.
In 2012, further generalization of Mittag - Leffler function was defined by Salim
[33] and Chauhan [13] as,

oo Lk
’Mq
kZ:O ak +6) (2:6)
where z,a, 8,7 € C, min{Re(a), Re(S), Re(y)} >0, and ¢ € (0,1) UN
r k ['(6 + qk
(=0t @) = HE

denote the generalized Pochhammer symbol [34],

Definition 2.3. A mapping T : E — E is called isotone or non-decreasing if
it preserves the order relation <, that is, if v <y implies Tx < Ty forallz,y € E.

Definition 2.4. [19] A mapping T : E — E is called partially continuous at a
point a € E if for e > 0 there exists a 6 > 0 such that ||[Tx — Tal|| < e whenever
x is comparable to a and ||z — a|| < 0. T called partially continuous on E if it is
partially continuous at every point of it. It is clear that if T is partially continuous
on E, then it is continuous on every chain ¢ contained in E.

Definition 2.5. A mapping T : E — E is called partially bounded if T (c) is
bounded for every chain ¢ in E. T is called uniformly partially bounded if all
chains T (c) in E are bounded by a unique constant. T is called bounded if T (FE)
1 a bounded subset of E.

Definition 2.6. A mapping T : E — E is called partially compact if T (c) is
a relatively compact subset of E for all totally ordered sets or chains ¢ in E. T is
called uniformly partially compact if T (c) is a uniformly partially bounded and
partially compact on E. T is called partially totally bounded if for any totally
ordered and bounded subset ¢ of E, T (c) is a relatively compact subset of E. If
T s partially continuous and partially totally bounded, then it is called partially
completely continuous on FE.

Definition 2.7. [19] The order relation < and the metric d on a non-empty
set E are said to be compatible if {x,}n,en is a monotone, that is, monotone
non-decreasing or monotone non-increasing sequence in E and if a subsequence
{Zn, tnen of {xn }nen converges to x* implies that the original sequence {xy }nen con-
verges to x*. Similarly, given a partially ordered normed linear space (E, =, -||),
the order relation < and the norm ||-|| are said to be compatible if < and the metric
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d defined through the norm || - || are compatible.

Definition 2.8. [16] A upper semi-continuous and monotone non-decreasing func-
tion ¥ : Ry — Ry is called a D-function provided ¥(r) =0 iff r = 0. Let (E, =
D) be a partially ordered normed linear space. A mapping T : E — E is called
partially nonlinear D-Lipschitz if there exists a D-function ¢ : Ry — R, such
that

1Tz = Tyl < &(llz —yl) (2.7)

for all comparable elements x,y € E. If ¥(r) = kr, k > 0, then Tis called a
partially Lipschitz with a Lipschitz constant k.
Let (E,=,] - ||) be a partially ordered normed linear algebra. Denote

Et = {x € E'| x = 0, where 0 is the zero element of E}

and
K={E"CFE|ueE" forall u,veFE"}. (2.8)

The elements of K are called the positive vectors of the normed linear algebra
E. The following lemma follows immediately from the definition of the set I and
which is often times used in the applications of hybrid fixed point theory in Banach
algebras.

Lemma 2.1. [17] If uy, ug, v1,v9 € K are such that uy < vy and ugy < vy, then
urug X U1vy.

Definition 2.9. An operator T : E — E is said to be positive if the range R(T)
of T is such that R(T) C K.

Theorem 2.2. [20] Let (E, =, ||-||) be a regular partially ordered complete normed
linear algebra, such that the order relation < and the norm ||-|| in E are compatible
in every compact chain of E. Let A,B : E — K be two non-decreasing operators
such that

(a) A is partially bounded and partially nonlinear D-Lipschitz with D-functions
Va,

(b) B is partially continuous and uniformly partially compact, and
(c) Mipy(r) <r,r >0, where M = sup{||B(C)|| : ¢ is a chain in E} and

(d) there exists an element xy € X such that xy < AxgBxg or x¢ = Az Bxy.
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Then the operator equation

AxBr = x (2.9)
has a solution z* in E and the sequence {x,} of successive iterations defined by
Tpy1 = Ax, Br,, n=0,1,..., converges monotonically to x*.

3. Main Result
The QFIE (1.1) is considered in the function space C'(J,R) of continuous real-

valued functions defined on J. We define a norm || - || and the order relation <
in C(J,R) by
]l = sup |=()] (3.1)
teJ
and
<y < x(t) <y(t) (3:2)

for all ¢ € J respectively. Clearly, C(J,R) is a Banach algebra with respect to
above supremum norm and is also partially ordered w.r.t.the above partially order
relation <.

The following lemma in this connection follows by an application of Arzela-Ascoli
theorem.

Lemma 3.1. Let (C(J,R),<,||-||) be a partially ordered Banach space with the
norm || - || and the order relation < defined by (3.1) and (3.2) respectively. Then
| - || and < are compatible in every partially compact subset of C(J,R).

Definition 3.1. A function v € C(J,R) is said to be a lower solution of the QFIE
(1.1) if it satisfies

v(t) < f(t,v(t)) (ﬁ /0 (t—s)@—”ngf((t—S)Q)g(s,v(s))ds)

for all t € J. Similarly, a function u € C(J,R) is said to be an upper solution of
the QFIE (1.1) if it satisfies the above inequalities with reverse sign.
We consider the following set of assumptions in what follows:

(A1) The functions f,g:J xR — R,,q:J — R, where q is continuous function.

(Ay) There exists constants My, M, > 0 such that 0 < f(t,z) < My and 0 <
g(t,z) < M, for all t € J and = € R.

(A3) There exists a D-function 1y such that

ng(t>$)_f(tay) Swf(x_y)
forallt e Jand z,y € Rz <.
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(A4) g(t,x) is non-decreasing in z for all ¢ € J.
(As) The QFIE (1.1) has a lower solution v € C'(J,R).

Theorem 3.2. [31] Assume that hypotheses (Ay)-(As) holds
then the QFIE (1.1) has a solution x* defined on J and the sequence {xy}nenu{o}
of successive approrimations defined by

a1 (t) = [f(t, 2a(t))] (ﬁ/o (t =) B3 ((t — 5)") g(safﬁn(S))dS) (3.3)

for all t € J, where xqg = v, converges monotonically to x*.

Definition 3.2. A function r € C(J,R) is said be a mazimal solution of the QFIE
(1.1) if for any other solution x of the QFIE (1.1), one has x(t) < r(t) for allt € J.
Similarly, a minimal solution p of the QFIE (1.1) can be defined in a similar way
by reversing the above inequality.

The following lemma is fundamental in the proof of maximal and minimal solutions

for the QFIE (1.1) on J.
Lemma 3.3. Suppose that there exist two functions y,z € C(J,R) satisfying

y(t) < [t y®)] (ﬁ JNGEE ey g(s,y<s>>ds> (3.4)

and

2() > [t =()] (ﬁ [ =g o) s s(0) ds) (3.5)

for allt € J. If one of the inequalities (3.4) and (3.5) is strict, then
y(t) < =(t) (3.6)

for allt € J.
Proof. Suppose that the inequality (3.5) is strict and let the conclusion (3.6) be
false. Then there exists ¢; € J such that

y(t1) = z(t1),t1 > 0,

and
y(t) < z(t),0 <t < t.
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From the monotonicity of f(¢,z) and g(¢,z)in x , we get
IR
o(t) < [Fono(e)]) (5 [ 6= B = 9 sl s
0

= [f(ts, 2(t1))] (FL) /0 (1 — S TUE((1 - 5)7) g(s,z(s))ds)

(q
< Z(tl) (37)

which contradicts the fact that y(t;) = z(t1). Hence, y(t) < z(¢t) for all t € J.

Theorem 3.4. Suppose that all the hypotheses of theorem 3.2 hold. Then the
QFIE (1.1) has a mazimal and a minimal solution on J.
Proof. Let ¢ > 0 be given. Now consider the fractional integral equation

we(t) = [fe(t, ze(t))] (ﬁ/o (t = )" ELT((t = 5)) ge(s,we(S))dS) (3.8)

for all t € J, where
fe(t, ze(t)) = f(t,2c(t)) + €
and
ge(t, ze(t)) = g(t, ze(1)) + €
Clearly, the function fc(t,z.(t)) and g.(t,z.(t)), satisfy all the hypotheses (A;)-
(As)and therefore, by theorem 3.2, QFIE (1.1) has at least a solution z(t) €
C(J,R).
Let €; and €5 be two real numbers such that 0 < €5 < €; < €. Then, we have

1 t
2o (8) = [foalt 2 (0] (@ [ =B = 59 gl ds)
o 1 t q—1 177,0,9 q
Loy (1) = [t 20y () + €2)] (F(q) [ =9 B - s (o) + eg>ds)
(3.9)
Teq (t) = [fﬁl (taxq (t))] <I’(1q)/0 (t - S)q_lE;Z:gq((t - 8)(]) 9eq (S’xfl (S)) ds)

70 (t) > [f(t, 20 (t) + e2)] (F(lq) e 9 B - ) gl + ds)
(3.10)
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for all t € J. Now, applying the Lemma 3.3 to the inequalities (3.9) and (3.10), we
obtain

Tey(t) < ey (1) (3.11)

for all t € J. Let ¢g = € and define a decreasing sequence {€,}>° , of positive
real numbers such that lim, ,.. €, = 0. Then in view of the above facts {z,}
is a decreasing sequence of functions in C'(J,R). We show that this is uniformly
bounded and equicontinuous. Now, by hypotheses,

|Ze, ()] < | [feu (8, 2, ()] (—/O (t =) By (¢ — 5)") gen(saxEn(S))dS) |

for all ¢ € J. Taking the supremum over ¢, we obtain ||z, || < r for all n € N. This
shows that the sequence {x.,} is uniformly bounded. Next, we show that {z.,}

is an equicontinuous sequence of functions in C'(J,R). Let ¢;,t, € J be arbitrary.
Then,

[z, (t1) = @e, (B2)] < | [fe, (t1, 7, (1))] %

(ﬁ /Ot1 (tr = )" B3 ((tr = 8)7) ge, (5,76, (5)) ds>
1

 Fon(tay e (82)] (@ [ = B = 9 g (5) ds) |
= |fen(t1a Le, (tl)) - fEn(t27 Le, (t2))|

< [ 0= B = 97 o () )
1

+ |f5n(t27$en(t2))|m

- / “ta = )T ETS(ty — 8)7) o (5,20, (5)) ds
< feu(tr, e, (t1)) = feo (L2, 2, (t2))]

1 ! a—1 04 —3)N g(s,x. (s))ds
'(W/ (1 — )T 23 ((0 — )7) g(s, 20 ( >>d>

/0 'ty — )Ty — 5)7) g (5.0, (5)) d

F1f(ta, 2. (h))|ﬁ ‘ /O Yty — 8T B (1 — 5)0)g(5, 20(s))ds

_ /02(t2 - 3)4—153356@((751 — §)0)g(s, 2n(s))ds
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+ /0 (b2 — ) LS — 5))g(s, 2 (s)ds

= [ (= B = 9

- /0 (t = 8V LS (1 — 8))g(s, 2a(s)ds

= [t = B = 9 (s s

< [f(t we, (1)) = [(ta, 7, (1))

X | <ﬁ /0 ! (tr — 8)T B (1 — 5)7) Mgds>

" Mf% /0 (ty — sy

/t 2(t2 - S)q_lEZ:gq((tl _ S)q)g<3,$n(8))ds

By (2 = 9)") = B ((h = 5)7)

19(s, zn(s))| ds

+

) 1 [(t2 = )71 = (01— 5)" [ B2 (1 — 9)) |g(s, 2a(s))| ds
< | f(t, 2, (t1)) = f(t2, e, (£2))]

<A [ 6= o B = o)) s

+Mfm/0 (ty —8)4!

[ [t = ) = (= ) EXS(t — ) Myds

B3 (82 = 9)%) = B (1 — 5)7)| Myds

0
T
+/O |(t2 —5)T — (t; — s)q_1| Eg:g’q((tl —5)1)M,ds

|7e, (t1) — we, (t2)] < [f (1, Te, (t1)) — f(t2, 7, (t2))]

E) 5 ((t = 8)7)

(g (- ra) ([ e-onta))

1 T 1/2
_112
—+ Mfm]\/[g (/O |(t2 — S)q 1‘ dS)
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) 1/2
(/ ]EW U(ts — )7) — EX59((t) — s)q)‘ ds)

. (/ (s — 8)" = (8 — )7 ds) 1/2
([ oo

Since the functions f and E 6‘1 are continuous on compact [0, T] x [—r, 7], (t — s)' ™
is continuous on compact [0 T] x [0, T], so uniformly continuous there. Hence, from
(3.12) it follows that

|z, (t1) — ¢, (L) = 0 as t; — ¢y

uniformly for all n € N. As aresult {x., } is an equicontinuous sequence of functions
in C'(J,R). Now the sequence {z,} is uniformly bounded and equicontinuous, so
it is compact in view of Arzeld-Ascoli theorem. By Lemma 3.1, {z,,} converges
uniformly to a function say r € C'(J,R), i.e. lim, o 2, (t) = r(t) uniformly on J.
We show that the function r is a solution of the QFIE (1.1) on J. Now, {z., } is a
solution of the QFIE

Te, (t) = [feu (t, 7, (1))] <ﬁ/ﬂ (t = )T EYS((t = 9)") Geu(s, T, (5)) dS)
(3.13)
— {f(t, z., (t)) + en} ﬁ/{) (t — s)q_lE;’:g’q((t —s5)?)
X (g(s,xe,(s) +€,)ds (3.14)

for all t € J. Now, taking the limit as by hypotheses n — oo in the above inequality
(3.13), we obtain

(1) = [(t. (1) (Fi) [ = m - 9 gtsurte) ds)

(g
for all t € J. This shows that r is a solution of the QFIE (1.1) defined on J.
Finally, we shall show that r(¢) is the maximal solution of the QFIE (1.1) defined
on J. To do this, let z(¢) be any solution of the QFIE(1.1) defined on J. Then,we
have

o(t) = [F(t, 2(0))] (ﬁ [ = - 9 (ot at) ds) (3.15)
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for all t € J. Similarly, if x. is any solution of the QFIE

et) = [f(ta(0)) + (ﬁ [ =m0 lsalo) + o ds)
(3.16)
then,
vt) > [(ta(t))] (ﬁ |- o <g<s,xe<s>>>ds) (3.17)

for all ¢ € J. From the inequalities (3.15) and (3.17) it follows that z(t) <
x:(t), t J. Taking the limit as ¢ — 0, we obtain z(t) < r(t) for all t € J. Hence
r is a maximal solution of the QFIE (1.1) defined on J. In the same way minimal
solution of the QFIE can be obtained. Further, we prove now that the maximal and
minimal solutions serve as the bounds for the solutions of the related differential

inequality to QFIE (1.1) on J = [0, T].

Theorem 3.5. Suppose that all the hypotheses of theorem 3.2 hold. Further, if
there exists a function u € C(J,R) such that

ut) < [f(t,u(t)) + (ﬁ [ =g - o) ts.at) + o ds)
(3.18)
for all t € J, then,
u(t) < r(t) (3.19)

for all t € J, where r is a mazximal solution of the QFIE (1.1) on J.
Proof. Let ¢ > 0 be arbitrary small. Then, by theorem 3.2, r(t) is a solution of
the QFIE and that the limit

r(t) = limr(t) (3.20)

e—0

is uniform on J and is a maximal solution of the QFIE(1.1) on J. Hence, we obtain

1 t
) = )+ (7 [ (€= 9B = Mot o)) + 9 ds)
0
(3.21)
for all t € J. From the above inequality it follows that

1

re(t) > [f(t.re(t))] (W/o (t =) By (¢ — 5)) (9(S7Te(8)))d8> (3.22)
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Now, we apply Lemma 3.3 to the inequalities (3.18) and (3.22) and conclude that
u(t) < re(t) (3.23)

for all t € J. This further in view of limit (3.20) implies that the inequality (3.19)
holds on J. This completes the proof. Similarly, we have the following result for
the QFIE (1.1) on J.

Theorem 3.6. Suppose that all the hypotheses of theorem 3.2 hold. Further, if
there exists a function v € C(J,R) such that

o(t) > [F(tv()] (i JRGEE R IESY <g<s,v<s>>>ds) (3.24)

I'(q)
for allt € J, then,
v(t) = p(t) (3.25)

for allt € J, where p is a minimal solution of the QFIE (1.1) on J.

4. Conclusion

Finally, using initial mixed conditions the quadratic fractional differential equa-
tion involving the generalized Mittag-Leffler function, the algorithm for the solution
of this equation were develop using the sequence of successive approximation which
converges monotonically. In addition from the same algorithm the existence of max-
imal and minimal solution were obtained which gives upper and lower bounds for
the solution.
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